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Exactly solved dynamics for an infinite-range spin system
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It is well known that the dynamical evolution of a systenN\o$pins can be viewed as a walk along the edges
of anN-dimensional hypercube. | use this correspondence in an infinite-range spin system to derive a diffusion
equation for the magnetization. The diffusion equation then leads to an ordinary differential equation that
describes the time evolution of the magnetization for any given initial condition, and it is used to derive both
static and dynamic properties of the spin system.
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Although the standard theory of Ising spin systdhg] E,=E(0)
and more generally of spin glasged deals only with ther-
mal equilibrium conditions of these systems, it is quite clear
that an understanding of spin dynamics is both desirable and
important. Spin dynamics cannot be ignored in experiments 3
and stands out as an important aspect of most computer ———(N=n)(N—n—1)—h(N—2n) 3)
simulations, and the study of spin dynamics has been under- 2N
taken by many people in recent yedd. In a landmark
paper published in 1985, Ogielsky] set out very clearly the __ i[(N— 2n)2—N]—h(N-2n). (4)
important issues in the simulation dynamics of spin glasses, 2N

and introduced the simple but compelling view that the evo-

lution of the spin configuration can be viewed as a randonﬁeca_use_ of th_e very-lor?g-_range Interactions, the assumed
walk along the edges of a hypercube. amiltonian(2) is not realistic, but—as will be seen later—it

Now let o, be theith spin variableP (-, m) be the prob- gives rise to a very neat phase transition, and has the great
ability that the system assumes the spin configuration advantage of leading to many exact results, both near the

={0}i-1n at themth time step, ang(oc— o) be the tran- critical temperature and away from it. o
sition prdbability from configuration to configurationo”’ A single spin flip either raises or lowers the magnetization

during one time step; in addition assume that there is exactll'?yI 2t/Nd a;ndtghemmatst(rer equztlﬁnfétr)r magnetization is directly
one spin flip during one time step. Then the following maste clated fo the master equatio

1 J
—Nn(N—n)—mn(n—l)

equation holdgS]: P(n,m+1)=p_(n+1)P(n+1m)+p,(n—1)P(n—1m),
(5)
P(U’erl):,Ea p(o’—o)P(o’,m), @ Wherep.(n) is the probability of raising+) or lowering

(=) n with a single spin flip if the configuration has

“down” spins, and P(n,m) is the probability thain spins
wherel , is the set of the spin configurations adjacentto ~are “down” at themth time step. ) o
i.e., the set of all configurations’ that can be reached from  There are {!) ways of selecting the “down” spins in

o with a single spin flip. In an infinite-range Ising spin sys- the configuration, therefore—when thermal equilibrium is
tem with Hamiltonian6] reached—the probability of finding the system in a configu-
ration with n “down” spins is

i #]

L p—(N) e ©
== &, rohe o 2 Ty (N)E_BE”,
n=1IN \ N

where P,=lim,_.., P(m,n), and B=1/KT is the usual in-

each state halil neighbors, and the set of neighbors can b€ q se temperature. and thus for long times becomes
divided in two clear-cut subsets with well defined energy and P ’ g =

magnetization. Indeed, if a configuratien hasn “down” P,=p_(N+1)P, 1 +ps(n—1)P,_1, (7)
spins andN—n “up” spins, the magnetization isM,
=M{(0)=(1/N)(N—2n), and the energy is ie.,
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N
~BEn= + “BEnt1 4 — ofa.
€ p-(n+1) n+l)e 1+p,(n—1)
N c -0.2
X —BEp-1- 5=
n—l)e ' ® ‘§ -0.4
g
these equations—and the conditiorp, (n)+p_(n) ¥ -0.6
=1—determine the transition probabilities. . For in- &
stance, at high temperature E§) becomes -0.8
N N N -1 0 100 200 300 400 500
n|=P-+D|nta[+P+(M=Dip-1], O time (number of spin flips)
. 0
ie., b.
1=p (n+1) "1 1] 10 I
“p-mtrrr e DIgTEy 400 R
ot
It is easy to see thagt, (n)=n/N is a solution of Eq(10): E" 0.6
this is just the probability of choosing at random one ofithe &
“down” spins. If we assume that the equilibrium and non- 0.8
equilibrium transition probabilities are actually the same, we
can use the high temperature solutn(n)=n/N in Eq. (5) -1

and obtain

n+1
——P(n—1m).

n+1
P(n,m+1)=TP(n+1,m)+ N
(11)

Equation (11) can be easily solved ilN>1, setting x
=n/N, Ax=1/N, andt=mAt whereAt is the time step, so
that P(n,m)—P(x,t) and

P(x,t+At)=(x+AXx)P(x+Ax,t)

+(1-X+AX)P(x—AXx,t); (12

(=]

1000 2000 3000
time (number of spin flips)

4000

FIG. 1. The jagged curve shows the magnetization in a Monte
Carlo simulation of the spin system considered in this paper, at high
temperature, while the continuous curve is the plot of the relaxation
function (17). The initial magnetization is-1 and the system has
(a) 100 spins;(b) 1000 spins; notice that finite-size effects are vis-
ibly less important in the large system.

1
x(t)= 5[1—(1—2Xo)972°t] (16)

then, after expanding as a Taylor series and keeping only ¢, the variablex and

the first order terms, we find

10P aP

oot =~ (1=20——+2P(x1), (13

wherec= Ax/At.

The quasilinear partial differential equatig¢h3) can be
solved with themethod of characteristicE7], so that, after
introducing a parametric variabk one obtains the pair of
ordinary differential equation€ODE’s)

dt 1 y

d_S_Ei ( )
dx—l 2 15
d_S_ - X! ( )

which can be easily solved with the initial conditiot®)
=0, x(0)=xXq; and yield the final result

M(t)=Mye 2° (17

for the magnetization, so that this particularly simple case
leads to a straightforward exponential relaxation. The
method of characteristics also yields an equation For
dP/ds=2P, which, however, is not relevant in the present
context, and can be neglected. Indeed if one starts with a
given magnetization, it can be shown that in the lakgkmit
the magnetization relaxes without spreading, and this is also
confirmed by numerical simulations. Figure 1 compares the
results of a Monte Carlo simulation of the high temperature
dynamics with the magnetizatidii7), showing good agree-
ment.

At lower temperature we may write, (n)=n/N+f(n),
andp_(n)=1-p,(n)=(1—n/N)—f(n), so that we obtain
the equation
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e [N=n N-n e 2N)[(N—2n)2—=N]—h(N—2n), so thatE, ,—E,=2(J/
e Fhn=| =+~ f(n+ 1) [e s N)(N-2n—1)+2h and E, ;—E,=—-2(J/N)(N-2n
+1)—2h, and Eq.(19) becomes
4|2 f(n—1)|e AEn-1 18
L .
N Nonr1(nDJe . (19 Nen Nen
= —2JB(N—2n—1)/N—28h
or 1 [ N +n+1f(n+l)e
N-n N-n e By N E—Lf(n—l) 23B(N~-2n+1)/N+2ph
1=\ T argfnt1) e P N N-n+1
n n (20
e f(n-1)|e BEn1-Ep
HN T NSarp (D e el (19)

If we take again the conditioN>1, and letx=n/N, we can
The energyE,, can be written in the formE,=—-(J/  solve Eqg.(20) and find

1—[(1—x)e~2IB(L-2X)-26h 1 y @2IA(1-2X)+26h]

F(x)= [(1—x)/x]e PBA-20-28_[y/(1— x)]e2I(1-20+26n ; (21

the functionf(x) is plotted in Fig. 2 for different values of sincef(1/2)=0, after a straightforward evaluation of the de-

the parametergJ andh/J. rivative off, we find that the system bifurcates@i=2, i.e.,
Using the functionf given in Eq.(21) we obtain a new the critical temperature with zero external field Ts(0)
quasilinear partial differential equation =J/2k.
Now we notice that neax=1/2 (which corresponds to a
L 1= 2x—2f(0 ] = 2[1+ 1 () ]P(x.1), null magnetization
c ot X
(22 1 dx

and then, using again the method of characteristics, we find

the pair of ODE’s 1
=1-2x+BI| x— —)
dt 1 23 2
ds ¢’ T.(0) 1
=1-2X+2——|x— = (27
T 2
d_x =1-2x—f (29
dS_ X (X), or
e 1dMm T.(0) " -
1OIX—1—2 —f 25 cdt T , 2
cai X—f(X). (25)
so that
Equation(25) describes the thermodynamic properties of
the system as well as its dynamics, because the system con- M(t)~M(0)e 2T TeOVT}, (29)

sidered here is dissipative and therefore for long times the

derivative (25 must vanish, i.e., the following system of 1ps |ast formula is not adequate near the critical tempera-
equations must be satisfied: ture; Eq.(27) must be approximated with the inclusion of

y=1-2x, (263 f”"(x) (the second derivative vanishesxat 1/2):
_ 1 dx 1 1\ 1 (1 1\3
y—f(X), (26b) I | = I P 7//1 _ =
car -2 tg)ixg) 75" z/\* 2]

and it can be solved numericallgee Fig. 8)]. In the sym-
metrical h=0 case, there is just one solution fif (1/2)
>—2, and there are three solutions fif(1/2)<—2, and  and the equation for the magnetization becomes
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FIG. 3. Numerical solutions of the system of equati¢28) for
different values oh/J. (a) Solution forh=0: the system displays a
supercritical pitchfork bifurcation as the parametgg#J2becomes
larger than 4: the attractors of the system are shown in black, the
repellor in gray.(b) and (c) (h/3J=0.05 andh/J=0.1): whenh
#0 the original pitchfork bifurcation becomes a supercritical
saddle-node bifurcation.

1 dM T.(0 T.(0) 4 T0)
__(1_ O [, T, 4T
-0.5 2c dt | T T 3 T2
(31
-1
0 0.2 0.4 . . 1 In a narrow region about.(0) andM~0, where
FIG. 2. Plot of the functiorf(x) vs x=n/N for different values 2
BJ andh=0. (@ BJ=1; (b) BI=2; (c) BI=3. The last figure 1 T(0)) _ _2Tc(0) N 4 T:(0) M2 (32)
shows a plot with nonzero fieldidd) 8J=3 and h/J=0.1. The T /- T 3 T2 ’
straight line in each figure is the function-2x, and the intersec-
tions of f(x) with the straight line are the solutions of the system of ) )
equations(26). the cubic term becomes dominant, and
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FIG. 4. Plot of the critical temperatur€.(h/J) vs h/J [the 50 b
critical temperaturél'.(h/J) is the temperature at which the solu-
tion of Eq. (26) starts bifurcating 12.5¢
10
M(t) ! +4 t - (33
~ =C , 7.5}
M?(0) 3
st
so that in this region the relaxation is no longer exponential.
These calculations can be easily extended to the cas' 2.sf
h+0: Figs. 3b) and 3c) show the resulting supercritical
saddle-node bifurcatiof8] at two different values of thk/J a 5 6 7 8
ratio, and Fig. 4 showd.(h/J) vs h/J: now there is one 2JIkT

“stable” magnetization, parallel to the external field, and an
antiparallel “metastable” magnetization.

Notice that the number of “down” spins can be directly
computed from the magnetizatidd, n=N(1—-M)/2, and
that this means that the internal energy per spin can be wri
ten as a function of the magnetizatidh(T,h/J):

FIG. 5. Plot of the heat capacity per spin for different values of
h/J: h=0 (solid ling); h/J=0.05 (long dashes h/J=0.1 (short
dashes (a) shows the heat capacity of the stable state, whje
ts_hows the heat capacity of the metastable state.

f(xe)=1-2x, (37

1 1 h J
N E(T:h13)==3| sMA(T,h/3)+ 3M(T,h1d) |+ 5 f'(x)=—2 (39)

(34)
then the heat capacity per spin KQC(T,h/J) at different Egg?%g:oon%égzi/ﬁi g)h us near the critical temperature Eq.
values of theh/J ratio can be computed from the numerical

solutions ofM(T,h/J), such as those shown in Fig. 3, using 1d
X

the formula Ea%l—Zx—(l—Zxc)—f’(xc)(x—xc)
Ty St Rt L 1
N N Tl NIM; 0Tl , —Ef”(xc)(x—xc)z (39
=—J<M(T,h/J)+g % ; 1, ,
h/J (39 =—§f (X)) (X—X%¢)%. (40)

Fig. 5 shows plots o€(T,h/J)/kN at different values of the This means that in the cadet 0 also the relaxation is non-
h/J ratio, both for the “stable” and for the “metastable” exponential near the critical temperature, but now the expo-

magnetization. nent is different, it is—1 rather than—1/2 as before.
When there is a nonzero external magnetic field the  In this paper | have found an exact solution for a particu-
function is no longer symmetrisee Fig. 1d)], butitis still  lar Ising spin model, with a method that is different from the

true that at the critical temperatuiie,(h/J) the following  established ones: it is natural to wonder where the difference
equations must hold &, the value ofx at which 1-2x is  from those other methods lies. Obviously the static proper-
tangent tof (x): ties might have been calculated from the partition function
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[6], which is easily written down because all states with ahowever, this partition function tells us nothing about the

given magnetization share the same energy, dynamics. In addition the treatment exposed here also pro-
n=N /N vides a clear connection between a simple spin system and
Z= Eo n e AEn the theory of dynamical systems and bifurcations.
A=
| wish to thank Professor G. Careri for having brought to
n=N [N my attention a paper by Campbgd], which introduced me
=> |n eUBRN)(N-2m?-NI+gh(N=2n).  (41)  to the problems of spin dynamics, and for many stimulating
n=0 discussions.
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