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Exactly solved dynamics for an infinite-range spin system
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~Received 12 June 2000; published 26 January 2001!

It is well known that the dynamical evolution of a system ofN spins can be viewed as a walk along the edges
of anN-dimensional hypercube. I use this correspondence in an infinite-range spin system to derive a diffusion
equation for the magnetization. The diffusion equation then leads to an ordinary differential equation that
describes the time evolution of the magnetization for any given initial condition, and it is used to derive both
static and dynamic properties of the spin system.
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Although the standard theory of Ising spin systems@1,2#
and more generally of spin glasses@3# deals only with ther-
mal equilibrium conditions of these systems, it is quite cle
that an understanding of spin dynamics is both desirable
important. Spin dynamics cannot be ignored in experime
and stands out as an important aspect of most comp
simulations, and the study of spin dynamics has been un
taken by many people in recent years@4#. In a landmark
paper published in 1985, Ogielsky@5# set out very clearly the
important issues in the simulation dynamics of spin glass
and introduced the simple but compelling view that the e
lution of the spin configuration can be viewed as a rand
walk along the edges of a hypercube.

Now let s i be thei th spin variable,P(s,m) be the prob-
ability that the system assumes the spin configurations
5$s i% i 51,N at themth time step, andp(s→s8) be the tran-
sition probability from configurations to configurations8
during one time step; in addition assume that there is exa
one spin flip during one time step. Then the following mas
equation holds@5#:

P~s,m11!5(
I s

p~s8→s!P~s8,m!, ~1!

whereI s is the set of the spin configurations adjacent tos,
i.e., the set of all configurationss8 that can be reached from
s with a single spin flip. In an infinite-range Ising spin sy
tem with Hamiltonian@6#

H52
J

N (
i , j 51
iÞ j

N

s is j2h(
i

s i , ~2!

each state hasN neighbors, and the set of neighbors can
divided in two clear-cut subsets with well defined energy a
magnetization. Indeed, if a configurations hasn ‘‘down’’
spins and N2n ‘‘up’’ spins, the magnetization isMn
[M (s)5(1/N)(N22n), and the energy is
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5
J

N
n~N2n!2

J

2N
n~n21!

2
J

2N
~N2n!~N2n21!2h~N22n! ~3!

52
J

2N
@~N22n!22N#2h~N22n!. ~4!

Because of the very-long-range interactions, the assu
Hamiltonian~2! is not realistic, but—as will be seen later—
gives rise to a very neat phase transition, and has the g
advantage of leading to many exact results, both near
critical temperature and away from it.

A single spin flip either raises or lowers the magnetizat
by 2/N and the master equation for magnetization is direc
related to the master equation forn:

P~n,m11!5p2~n11!P~n11,m!1p1~n21!P~n21,m!,

~5!

where p6(n) is the probability of raising~1! or lowering
~2! n with a single spin flip if the configuration hasn
‘‘down’’ spins, and P(n,m) is the probability thatn spins
are ‘‘down’’ at themth time step.

There are (n
N) ways of selecting then ‘‘down’’ spins in

the configuration, therefore—when thermal equilibrium
reached—the probability of finding the system in a config
ration with n ‘‘down’’ spins is

Pn5S N

n D e2bEn

(
n51,N

S N

n D e2bEn

, ~6!

where Pn5 limm→` P(m,n), and b51/kT is the usual in-
verse temperature, and thus for long times Eq.~ 5! becomes

Pn5p2~n11!Pn111p1~n21!Pn21 , ~7!

i.e.,
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S N

n D e2bEn5p2~n11!S N

n11D e2bEn111p1~n21!

3S N

n21D e2bEn21; ~8!

these equations—and the conditionp1(n)1p2(n)
51—determine the transition probabilitiesp6 . For in-
stance, at high temperature Eq.~8! becomes

S N

n D 5p2~n11!S N

n11D 1p1~n21!S N

n21D , ~9!

i.e.,

15p2~n11!
N2n

n11
1@12p2~n21!#

n

N2n11
. ~10!

It is easy to see thatp1(n)5n/N is a solution of Eq.~10!:
this is just the probability of choosing at random one of thn
‘‘down’’ spins. If we assume that the equilibrium and no
equilibrium transition probabilities are actually the same,
can use the high temperature solutionp1(n)5n/N in Eq. ~5!
and obtain

P~n,m11!5
n11

N
P~n11,m!1

N2n11

N
P~n21,m!.

~11!

Equation ~11! can be easily solved ifN@1, setting x
5n/N, Dx51/N, andt5mDt whereDt is the time step, so
that P(n,m)→P(x,t) and

P~x,t1Dt !5~x1Dx!P~x1Dx,t !

1~12x1Dx!P~x2Dx,t !; ~12!

then, after expandingP as a Taylor series and keeping on
the first order terms, we find

1

c

]P

]t
52~122x!

]P

]x
12P~x,t !, ~13!

wherec5Dx/Dt.
The quasilinear partial differential equation~13! can be

solved with themethod of characteristics@7#, so that, after
introducing a parametric variables, one obtains the pair o
ordinary differential equations~ODE’s!

dt

ds
5

1

c
, ~14!

dx

ds
5122x, ~15!

which can be easily solved with the initial conditionst(0)
50, x(0)5x0; and yield the final result
02611
e

x~ t !5
1

2
@12~122x0!e22ct# ~16!

for the variablex and

M ~ t !5M0e22ct ~17!

for the magnetization, so that this particularly simple ca
leads to a straightforward exponential relaxation. T
method of characteristics also yields an equation forP,
dP/ds52P, which, however, is not relevant in the prese
context, and can be neglected. Indeed if one starts wit
given magnetization, it can be shown that in the large-N limit
the magnetization relaxes without spreading, and this is a
confirmed by numerical simulations. Figure 1 compares
results of a Monte Carlo simulation of the high temperatu
dynamics with the magnetization~17!, showing good agree
ment.

At lower temperature we may writep1(n)5n/N1 f (n),
andp2(n)512p1(n)5(12n/N)2 f (n), so that we obtain
the equation

FIG. 1. The jagged curve shows the magnetization in a Mo
Carlo simulation of the spin system considered in this paper, at h
temperature, while the continuous curve is the plot of the relaxa
function ~17!. The initial magnetization is21 and the system ha
~a! 100 spins;~b! 1000 spins; notice that finite-size effects are v
ibly less important in the large system.
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e2bEn5FN2n

N
1

N2n

n11
f ~n11!Ge2bEn11

1F n

N
2

n

N2n11
f ~n21!Ge2bEn21, ~18!

or

15FN2n

N
1

N2n

n11
f ~n11!Ge2b(En112En)

1F n

N
2

n

N2n11
f ~n21!Ge2b(En212En). ~19!

The energy En can be written in the formEn52(J/
f

fin

o
c
th
f

02611
2N)@(N22n)22N#2h(N22n), so that En112En52(J/
N)(N22n21)12h and En212En522(J/N)(N22n
11)22h, and Eq.~19! becomes

15FN2n

N
1

N2n

n11
f ~n11!Ge22Jb(N22n21)/N22bh

1F n

N
2

n

N2n11
f ~n21!Ge2Jb(N22n11)/N12bh

~20!

If we take again the conditionN@1, and letx5n/N, we can
solve Eq.~20! and find
f ~x!5
12@~12x!e22Jb(122x)22bh1xe2Jb(122x)12bh#

@~12x!/x#e22Jb(122x)22bh2@x/~12x!#e2Jb(122x)12bh
; ~21!
e-

ra-
f

the functionf (x) is plotted in Fig. 2 for different values o
the parametersbJ andh/J.

Using the functionf given in Eq.~21! we obtain a new
quasilinear partial differential equation

1

c

]P

]t
1@122x22 f ~x!#

]P

]x
52@11 f 8~x!#P~x,t !,

~22!

and then, using again the method of characteristics, we
the pair of ODE’s

dt

ds
5

1

c
, ~23!

dx

ds
5122x2 f ~x!, ~24!

i.e.,

1

c

dx

dt
5122x2 f ~x!. ~25!

Equation~25! describes the thermodynamic properties
the system as well as its dynamics, because the system
sidered here is dissipative and therefore for long times
derivative ~25! must vanish, i.e., the following system o
equations must be satisfied:

y5122x, ~26a!

y5 f ~x!, ~26b!

and it can be solved numerically@see Fig. 3~a!#. In the sym-
metrical h50 case, there is just one solution iff 8(1/2)
.22, and there are three solutions iff 8(1/2),22, and
d

f
on-
e

sincef (1/2)50, after a straightforward evaluation of the d
rivative of f, we find that the system bifurcates atbJ52, i.e.,
the critical temperature with zero external field isTc(0)
5J/2k.

Now we notice that nearx51/2 ~which corresponds to a
null magnetization!

1

c

dx

dt
'122x2 f 8S 1

2D S x2
1

2D
5122x1bJS x2

1

2D
5122x12

Tc~0!

T S x2
1

2D ~27!

or

1

c

dM

dt
'22S 12

Tc~0!

T D M , ~28!

so that

M ~ t !'M ~0!e22c$[T2Tc(0)]/T%t. ~29!

This last formula is not adequate near the critical tempe
ture; Eq. ~27! must be approximated with the inclusion o
f-(x) ~the second derivative vanishes atx51/2):

1

c

dx

dt
'122x2 f 8S 1

2D S x2
1

2D2
1

6
f-S 1

2D S x2
1

2D 3

,

~30!

and the equation for the magnetization becomes
6-3
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FIG. 2. Plot of the functionf (x) vs x5n/N for different values
bJ and h50. ~a! bJ51; ~b! bJ52; ~c! bJ53. The last figure
shows a plot with nonzero field:~d! bJ53 and h/J50.1. The
straight line in each figure is the function 122x, and the intersec-
tions of f (x) with the straight line are the solutions of the system
equations~26!.
02611
2
1

2c

dM

dt
5S 12

Tc~0!

T D M1S 122
Tc~0!

T
1

4

3

Tc
2~0!

T2 D M3.

~31!

In a narrow region aboutTc(0) andM'0, where

S 12
Tc~0!

T D&S 122
Tc~0!

T
1

4

3

Tc
2~0!

T2 D M2, ~32!

the cubic term becomes dominant, and
f

FIG. 3. Numerical solutions of the system of equations~26! for
different values ofh/J. ~a! Solution forh50: the system displays a
supercritical pitchfork bifurcation as the parameter 2bJ becomes
larger than 4: the attractors of the system are shown in black,
repellor in gray.~b! and ~c! (h/J50.05 andh/J50.1): whenh
Þ0 the original pitchfork bifurcation becomes a supercritic
saddle-node bifurcation.
6-4
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M ~ t !'6S 1

M2~0!
1

4

3
ctD 21/2

, ~33!

so that in this region the relaxation is no longer exponent
These calculations can be easily extended to the c

hÞ0: Figs. 3~b! and 3~c! show the resulting supercritica
saddle-node bifurcation@8# at two different values of theh/J
ratio, and Fig. 4 showsTc(h/J) vs h/J: now there is one
‘‘stable’’ magnetization, parallel to the external field, and
antiparallel ‘‘metastable’’ magnetization.

Notice that the number of ‘‘down’’ spins can be direct
computed from the magnetizationM, n5N(12M )/2, and
that this means that the internal energy per spin can be w
ten as a function of the magnetizationM (T,h/J):

1

N
E~T,h/J!52JS 1

2
M2~T,h/J!1

h

J
M ~T,h/J! D1

J

2N
;

~34!

then the heat capacity per spin (1/N)C(T,h/J) at different
values of theh/J ratio can be computed from the numeric
solutions ofM (T,h/J), such as those shown in Fig. 3, usin
the formula

1

N
C~T,h/J!5

1

N

]E

]T U
h/J

5
1

N

]E

]M U
h/J

]M

]T U
h/J

~35!

52JS M ~T,h/J!1
h

JD ]M

]T U
h/J

;

~36!

Fig. 5 shows plots ofC(T,h/J)/kN at different values of the
h/J ratio, both for the ‘‘stable’’ and for the ‘‘metastable’
magnetization.

When there is a nonzero external magnetic field thf
function is no longer symmetric@see Fig. 1~d!#, but it is still
true that at the critical temperatureTc(h/J) the following
equations must hold atxc , the value ofx at which 122x is
tangent tof (x):

FIG. 4. Plot of the critical temperatureTc(h/J) vs h/J @the
critical temperatureTc(h/J) is the temperature at which the solu
tion of Eq. ~26! starts bifurcating#.
02611
l.
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f ~xc!5122xc , ~37!

f 8~xc!522 ~38!

~whenh50, xc51/2). Thus near the critical temperature E
~ 25! becomes~for hÞ0)

1

c

dx

dt
'122x2~122xc!2 f 8~xc!~x2xc!

2
1

2
f 9~xc!~x2xc!

2 ~39!

52
1

2
f 9~xc!~x2xc!

2. ~40!

This means that in the casehÞ0 also the relaxation is non
exponential near the critical temperature, but now the ex
nent is different, it is21 rather than21/2 as before.

In this paper I have found an exact solution for a partic
lar Ising spin model, with a method that is different from th
established ones: it is natural to wonder where the differe
from those other methods lies. Obviously the static prop
ties might have been calculated from the partition funct

FIG. 5. Plot of the heat capacity per spin for different values
h/J: h50 ~solid line!; h/J50.05 ~long dashes!; h/J50.1 ~short
dashes!. ~a! shows the heat capacity of the stable state, while~b!
shows the heat capacity of the metastable state.
6-5
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@6#, which is easily written down because all states with
given magnetization share the same energy,

Z5 (
n50

n5N S N

n D e2bEn

5 (
n50

n5N S N

n D e(Jb/2N)[(N22n)22N] 1bh(N22n); ~41!
0261
ahowever, this partition function tells us nothing about t
dynamics. In addition the treatment exposed here also
vides a clear connection between a simple spin system
the theory of dynamical systems and bifurcations.
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my attention a paper by Campbell@9#, which introduced me
to the problems of spin dynamics, and for many stimulat
discussions.
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